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ABSTRACT

This note presents a tutorial survey of the mathematics that is used in the
study of linear predictive filtering as applied to the analysis and synthesis of
speecn, Speech is modelled as the output of an all-pole filter that is driver by
either a periodic pulse train or white noise. A minimum-mean-squared-error
technique for estimating the coefficients of this filter from speech data is
presented, This technique leads to a set of equations for the coefficient
estimates which can be solved by a computationally efficient re~ursive technique
known as Levinson's method.

Ay} NIRRTy

The filter derived by the above mentioned technique can be realized by
any standard technique; however, a particularly interesting realization is in
terms of a digital sirnulation of a non-uniform acoustic tube. It is shown
that any stable all-pole filter can be realized as an acoustic tube and, moreover,
that the Levinson recursion produces as a by-product exactly the reflection
coefficients needed for such a realization,

The report concludes by showing how the classical theory of orthogonal
polynom'=ls can be applied to the speech analysis/synthesis problem and used
to derive many of the results obtained above by other m.¢. ns,
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INTRODUCTION

The purpose of this note is to present a tutorial discussion of the math:matical
theory underlying the analysis and synthesis of speech by mmeans of linear
predictive filtering. None of the results present:d here are new, all having
appeared either in the literature or in research reports. The main reason
for the present note is to present these scattered results from a unified stand-
point and, in some cases, to provide more detail than is available in the
literature.

The basic speech problem under consideration can be formulated as
follows.” Samples of a speech waveform are modelled as being the output of
a digital filter that has been excited by either a series of equally spaczd pulses
or white noise depending whether the speech is voiced cr unveiced. The filter

is described by the difference equation

p
S =, N - : S ¥ 4+ U (l)
n k-1 k n-k n
where u_ denotes the nth sample of the excitation and Sh denotes the nth sample of

speech. The filter order p is assumed to be known on the basis of other

considerations, The transfer function of this fiiter is easily seen to be [Hp(z)\ hy

where
.. ok

Hp(z) =1- kflakz )
from which it is apparent that [Hp(z)] M is an all-pole filter. The problem at hand
is to use samples of real speech to arrive at an estimate of the filter coefficients
ﬂk and then to use these coefficients to synthesize a filter that could be
used to regenerate the original speech. The latter operation requires a knowledge
of whether the original speech was voiced or unvoiced but the problem of how
to obtain this information is not the concern of the present work.

There are many ways one could go about estimating the filter coefficients

from the speech samples. The particular method that will be considered in this

* This section is based on references 1, 2, 6, 8, 9.




note < a minimum-mean-squared error technique that now will be
described.
Select a group of N+1 speech samples which, for convenience, will

be numbered from n=0ton = M, Define a scquence Sh by

speech sample 0<nsN
5, = (3)
0 n <0, n>N
and define the mean-squared prediction error by .
2 v
© P s
e = Zis - a8 ]
peeg® =] * V% (4)

The quantity e is a function of the assumed values for the ak's. The
desired estimate for the ak's is obtained by choosing those values that yield
a minimum value of e.

This problem can be solved by first expanding equation (4) as follows" :

2 p P
¢ = 2§ -1 24 s S + Z aa S .S _ .
nn k-1 k& n n-k k,j=lkJ L nek e
R -2 2 aR S R
= & a * a, ;
god: B L ig S p (5)

n n-k (6)
It will be convenient to rewrite equation (5) in matrix form as follows:

e=R -2a"r+a Ra %)

where

.8

NI ST
1 p

e (8)
r’ :{RI,RZ,...RP\

* All sums without limits will henceforth be assumed to run from n = ot N =,




and the correlation matrix R has as its (i,j)th element Rj-j. Note that
because R is a correlaticn matrix, it is positive definite and, therefore,

non-singular.

Completing the square in equation (7) yields the result,

e-@-RTpTR@-R'p+ R -c'R £ (9)

. Eouation (9) may be verified simply by multiplying out the quadratic form and

cancelling the appropriate terms. The desired minimization can now be

S AT i WY A — e S —

performed by noting that since R is positive definite the minimum value of the

quadratic form in equation (9) is zero and can be achieved by setting a equal

(p)

to 3"’ where

TN S L "

A_a_(P) =Rl (10) i

The rezulting min.mum e is given by

®min ~ e(p) 1 Ro i L—l R-l-r'
- R - ET _(p)
. R - Ea®R
g k=1 k k (11)
t The use of the superscript p to denote the minimizing ak's and €nin M3y

seem peculiar but the reason for this notation will become apparent in the next

section.

Equation (10) expresses the solution to a set of linear equations in matrix
notation. In ordinary notation, the equatisns to which equation (10) is the

solution are

5 P
: 25 p) o
Ri 3 & kRi-k =0 (12)
k=1
T ([ o

T S E———— e et (T KAy s

These equations, called the autocorrelation normal equations, will play

a vital role in the sequel,




THE LE VINSON RECURSION

The autocorrelation normal equations (12) can be solved in a recursive

way by means of a technique known as Levinson's method. To derive this

i L b
i technique, first assume that the solution to the n' order autoco.relation

(n)

normal c-uations is known and denote it by ap’, k=1,...n, Next, write

! down tlien+ 1 - order equatiors in the form

R, - g a(nH) R - a(n+1) = 0
i i k=1 k i-k n+l i-n-l
|
| S e (13)

n
L, (n+1) _ (1) -
L A Sl TR e

A neat way of getting at the Levinson recursion is to assume a solution to 13)
yolg g

of the form

2 (n+1)

. al - b, , k=1,...n. (14)

; with ag:l) to be determined later. Substitution of (14)into the first

! n of equations (1) leads to the new equation

n
_ o (ntl) e

k::lkai-k T (15)
=1, 25 ol

Motivated by the fact that equations (15) look very much like the nth order
autocorrelation normal equations, the change of variable j = i-n-1 is made with

the result

n

(n+1) . » ;
Coel N % Rakaaq %0 (16)

i = s,

Next, the change of variable { =n+ 1 - k is made and (16) becomes

a(n'H) R.

n

iy WEL-E Tyl

Since, equations (17) are a scaled version of the nth order autocorrelation normal

equations their solution is evidently given by,

*
See reference 7.
4
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b ~ a(r1+l) a(n)

M1-£  “ml ¢ ) =1, ..8. (18)
and, therefore
(n+1) (n) __(m1) (n)
A %K b1 ok (18
g . (n+1)
It only remains to see if a value of a . van be found such that

the last remaining equation in the set (13) can be satisfied. Using (19),

this equation now reads,

n
: ) _ _(m+1) () _ o (nl) )
Rn+l { z a a a k“+1_k a R0 = 0

k-1 n+l n+l-k n+1
(20)
This equation can be solved for an(frl) with the result,
n
3 (n)
L DI Y Bt i YO N
! T~ n
n
R - = &R
R il |
k=1 (21)

This result is meaningful as long as the denominator is not zero; howev:r,

the denominator is exactly equal to the minimum mean squared error for the

nth stage of the process, e(n) as given by equation (11). However, e(n) can never
be zero, for if it were, it would follow that s = 1 4,8 for all n. Sinces =0
n =1 k"n-k n

for n-0, this equation implies that s =0 for all n. Since this cas« ncver arises

in practice, it follows th.'t equation (21)is always meaningful,

The only ingredient missing to set this recursive process iu motion is
a solution to the first order system and this can be written down by inspection

of (12) as

For later considerations, it will be usaful to rewrite the Levinson recursion
in terms of the inverse filter vransier function Hp(z) instead of in terms of the

coefficients a{\_n) as given by equations (19) and (21). This recursion is easily




|
l
/
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seen to be given by,
- s -(nt1) 3 E
H l(z) = Hn(z) Kn z Hn(z ) (23)

with Kn being determined by the Rk's via equation (21). The initial condition
for /23) is given by " ,
_ 1 -1 _ \
Hl (z) = 1- w2 (24)
(0]
It is evident from equation (22) that I KO | < 1 and it turns out that this

is true for K'1 for all n. Since this fact will be vital in the sequel it will b: proved

now,

To this end, it will be necessary to rewrite equation (21)in the z-transform

domain by making use of the easily verified identity.

Ry = E% 8n n-k
. 2
- [ e'jz”kf| sl I af (25)
3
whe ¢ S(z) denotes the z-transform of the speech samples
- -n
S(z) = ‘IL‘] s, 2 (26)

In order to simplify notation, equation (25) will be rewritten as

2
df 27

R, = | 3 ¥ |s(z)

where the convention in force here and in the sequel is that all integrals have
limits (-%, #) and whenever the variable z appears under an integral sign, it is

understood to be equal to cjznf. Equation (21) which defines Kn now can be

rewritten in the form .

2 n
S fls(z)| [z'(““) -kzzl a(;‘)z'(““'k)] df ‘
. E n (n) -k r
jIS(z)I [l— V2, akz ldf !
k=1 {
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o

-(n+1)

S(z ’ ‘ ) =15
£(z) Z Hn(z ) df

. -
f I S(z)i| H () af (28)

Since the denominator of this equation is the minimwn mean squared error, it

(n) ¢
e /]sml Ho(z) o (29)

follows that,

A recursion for e(n) can easily be derived by writing
(n+1) 2
e = /, S(z)‘ Ho) (z) df .
B Nt s -1 E
f| S(z,’ lHn () - Kz Hy (27 of \
" ™ .k s) " 2 ™Dy @l ar

f
e(r') [ 1 - K2 ]
. |

(30)
where the last step follows from equation (28)-

(n)

Since e* * mu . always be positive, it follows from the last equation that “)
l Knl < 1 as advertiscd.

As an important application of the result that , K, | < 1, it will be shown

R T

that all the zeros of Hn(z) lie strictly inside the unit circle, which implies
=1
that the speech synthesis filters [Hn(z) l will always be stable. The

proof proceeds by induction by first noting that because a correlation function

B

is always maximum at the origin, l Rk % Ro' it followe that Hl(z) as

defined by eqation (24), has its zero insive e urit circle. Next, assume that

Hn(z) has its n zeros inside the unit circle. Multipiying equation (23) by M and

-1
noting that, on the unit circle z““Hn(z)‘ = lHn(z ) , it follows from Rouche's "

theorem that zn+ 1Hn+ l(z) and zrl+ IHn(z) have equal numbers of zeros

n+1

inside the unit circle. Since z Hn(z) has 1+1 zeros inside the unit circle

the proof nf the statement follows by induction.

e

* Reference 10, p. 116.
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The Monuniform Acoustic 'I‘ubg

-*
Figure 1 depicts three sections of a nonuniform acoustic tube. The
cross-sectional area of the nth section is An and the length of all sections
isA. The forward and backward components of the volume velocity measured

at the ieft-hand end of the o'

section are sampled every 2A/c seconds and the
z-transforms of these samples are denoted by V: (z) and Vr" (z). The constant
¢ denotes the velocity of sound in the tube.

The relationship between the volume velocities in the nth and nch
sections can be determined by writing down the continuity equations for volume
velocity and acoustic pressure at the boundary between the nth and n+lth sections.
The z-transforms of the forward and backward volume velocities measured
at the right-hand end of the nth section are given by z—%V; (z) and z"E V; (2)
respectively. The continuity of volume velocity can now be expressed by the equation

g & A
+1 () - V, () = 2" v: (2) - z’l'vn (@) (31)

Since the acoustic impedence of the nth section is given by pc/An where p
denotes the density of air, the continuity of acoustic pressure is expressed

by the equation,

TF— vy + v (z)] EA— |2 B+ Ve
n+l
(32)

These equations can be solved for V:+l (z) and VI-H'I (z) with the result,

+ P R T R ; I
Vn+l (z) = -ﬁ?n—- [ % Vn (Z) rn z Vn (2)
P (33)
5 & 1 :
Vo @ = T | -T2 v @) + 2* @) I
where the reflection coefficient £ is defined by
g % An g A1':+l
n A % A =1 (34)
n ntl

-

This section is based primarily on reference 1. Note carefully that the numbering
of the tube sections differs from that in ref. 1 in that n here corresponds to Wakita’s
IM-n.

8
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In matrix for.n these equations read,

+ . +
Vn+l (z) 4 1 T Z Vn (z)
. ='TZT (35)
y J
Vr-1+1 (z) : S Vr; (z)

Equation (35) can be inverted easily with the resuit,

| " -
v, (@) 1 ST (%)
Z; [ (3
T } 6)
= n of 2 .
V (2) rz oz Vo @
n

These equations can be conveniently normalized by introducing the

quantities
n
2
ut (z) = z v
n n-1 L2 n
n ( i
B (37)
3
- z -
U (z) = n-1 \
n #i (l-ri) n
, i i=1
ir terms of which equation (14) becomes:
+ +
i Un (2) 1 rn Ul’H'l (z)
' : & . ; [ (38)
I Un (z) r 2 z L Un+l (z)
't Tae quantitie: U: (z) and U;] (z) can be interpreted as the forward and backward
: components of volume velocity in a fictitious acoustic tube which differs
i n-1
| from the real tube only in that a gain factor T (1 -ri) and an overall
i=1

n
delay 2*7 have been removed.

Equation (38) can be used to derive a digital network whose response is the same as that
of the acouscic tube. To accomplish this, equation (38) is first rewritten in the

form:

10




+ 5
Un-f;- (z) = Url (z) - rnUm-l (z)

(39)

U @ =2 ey e + U, ()]

The digital network that is generated by equation (39) is shown in Figure 2,
This network as drawn is incomplete because no termination has been specified
thus making it impossible to compute the sequence of backward going waves,

As an example of a termination (one that will play a role in the sequel) assume

the end of the tube is connected to a tube of infinite cross-section and of infinite

lengih i.e., free space filled with air. This means that the final reflection coefficient
is -1 and that there is no backward wave at the output, The network for this
arrangement is shown in Figure 3 with the inputs to i network being the output

of an N-section acoustic tube,

T T A

The next order of business is to compute the t-u.usfer function of an
N-section acoustic tube. This will be done for the tube termination depicted in
Figure 3 which implies that Uout(z) = U; (z). Since equation (38) enables |
one to recursively compute the z-transforms of the forward and backward waves
in the nth section of the tube in terms of their counterparts in the n+15¢ section it is
natural to assume a simple output z-tran: form and then compute the input z-transform
UT (z) that produced this output, If Uo(tft) -1 is acsumerl, then it follows that

U;, (z) = 1 and U;\J(z) = g1, Equation (38) is now employed N times to arrive

at UT (z) and it follows that the tube's transfer function is

u__ (z) -
T(z) = out = [UT (z)] 1 (40)

U @

Wi T e S T

The computation just described is related to the Levinson recursion in
a very important way. To make this fact clear, the Levinson recursion must

be rewritten by introducing the ; .nctions G: (z) and Gr-l (z) defined by E

4
_, Gn (z) Hn (z) 1)

)., =1
G, (2) I T

11




‘fqnj >131snOde Ue I0j Maomidu veytdig 7 *Sig

\f

(1) n (2) N..;..._ (2)'n
%

+

€9111-2-81




. g

sy deewi by

e

9

o —————

Acoustic tube termination.
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In terms of these functions, the Levinson recursion, equation (23), can be written

as a set of two recursions as follows:

G:H () = Gl (2) + K. G (2)

(42)
e el i i -
Clag (Z) = =% l\n Gn (z) + Gn (z) ]
or, in matrix form,
o
+ ; + ]
Gn+l (z) 3 1 Kn Gn (z) ),
3 g =l A = (43)
Gn+l (z) }\nz Gn (z)
The initial condition for the recursion is now
G: z) = 1
(44)
G, (z) = .z

A comparison of equations (42) and (38) reveals that these two recursions
are identical in form except that the indexing of the two are reversed, i.e.,
the acoustic tube indexing is fromn=N ton =1 but the Le -inson recursion i
indexes fromn=1ton =N, Moreover, comparison of equation (44 ) and the
initial conditions used for computing the acoustic tube's transfer function shows
that these are also identical. What this all mcans is thac an acoustic tube

with reflection coefficients given by Fogin Kn-l hés a transfer function given by

Yy [HN-I (Z)J : (45)

In other words, since the Levinson recursion yields the best estimate of the filter
inverse to the filter that produced the original speech samples, the acoustic tube
filter discussed above has a transfer function that is an estimate of the filter

that originally produced the speech. Thus, this acoustic tube filter is a natural

candidate fo a filter to synthesize speech,

14




Atal (reference 8) has given a different derivation of the transfer function of
a nonuniform acoustic tube, His derivation leads to the transfer function given
by equation (45) however, his acoustic tube differs from the one derived above
mainly in that the input and output terminals are interchanged. In other words,
the reflection coefficient Kl which appears at the output end of the acoustic tube
derived above, appears at the input end of Atal’s acoustic tube. Mathematically
there does not secm to be any reason to choose one of these acoustic tubes over

the other since they have identical transfer functions, however Wakita's

tube seems more natural as a model of the vocal tract. This follows from

the fact that Wakita's output termination is an infinite cross section tube

which appears correct for modelling the interface hetween the lips and the

outside world,

It has now been demonstrated how speech data can be used to derive
a set of filter coefficients ak(p) and a set of reflection coefficients Kn i
The former could be user in a direct-form realization of a speech synthesis
filter whereas the latter could be used to synthesire an acoustic tube synthesis
filter. Which of these realizations is better is stil. a topic for investigation.

For the sake of completeness, this section will conclude by showing how

an arbitrary, stable all-pole filter [Hn(z)]-l , can be realized as an

acoustic tube,
The basic tool for this demonstration is the so-called backward Levinson
recursion which can be derived from the forward Levinson recursion, equation (23)

as follows. Solving equation (23) for Hn(z) yields the relation,

PR T ROV U g e nee——_—— W LT s pw e
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Hn('z.) < M1 (z) + K z-(m—l) Hn(Z-l) (46)

Next set z = z-1 in equation (23) and solve again for Kn Hn(z) with the
result:
" __=(n+1) =1, - -1
l\n Hn (z) = 2z Hn(Z ) Hn+] z ) (47)
The elimination of Hn(z'l) berween equations (46) and (47) leads to the

desired result:

2 -(n+1) -1

H (2) = —— [ H, @+ K 2 H @) 8
Since the constant term in Hn(z) is unity, it follows from equation (48)

that

(n+1)

3 L (n+1) H

ntl- n w1 @ | = 49

Let HN(Z) denote an arbitrary Nth order polynomial in z-l with constant
term equal to unity. Furthermore, assume that all the zeros of H, (z) lie strictly
inside the unit circle so that HN(z) =l is the transfer function o‘f a stable, all
pole filter. Since all the zeros of HN(Z) are inside the unit circle and since the
coefficient of z-N in HN(Z) is the product of all the zeros of HN(Z)’ it follows that

KN as given by equation (49) satisfiesIKN| <1

Assume next, that the backward Levinson recursion, equation (48),
has been implemented n times and that |K\J_ 1l I < 1 and that the polynomial
HN—n+l (z) has a constant term equal to unity and that all its zeros lie inside the
unit circle. It now follows from an application of Rouche's theorem that
ton (z) as given by equation (48) has all of its zeros inside the unit circle
and, therefore, that, Ky-n I < 1 . The details of this argument wi'l not be

given here because they are virtually identical to those given earlier when it




. was shown that the forward Levinson recursion leads to stable filters as long !
as the Kn's used satisfy ‘ Kn | < 1. It now follows by induction that all
the Kn 's produced by the backward Levinson recursion equations (4 8) and (49)
satisfy ,Kn| < 1 as long as the starting polynomial HN (z) had all of its zeros
inside the unit circle.

Since it is obvious that a forwar2 Levinson recursion using the Kn's derived

h & from a backward Levinson recursion will yield back the starting polynomial

. HN(z), it follows from the discussion earlier in this section that a properly

terminated acoustic tube having these Kn's as reflection coefficients will have

a transfer function given by HN (z) - . It has thus been shown Low an

-—

arbitrary, steble all-pole filter can be realized as an “coustic tube.

The Orthogonal Polynomial Approach

The theory that has been presented is complete in itself, however, it
should be pointed out that the results that have been derived are often arrived at
in the literature by a completely different path making use of the theory of polynomials
orthogonal on the it circle®, The details of this alternate approach will now
be presented. The first part of this section will deal exclusively with the theory

of these polynomials with the connection to the speech problem being made later.

B . ot 3
PO

J_‘ * This section is based on references 3,4 and 5.




A weighting function w(z) is defined to be any function that satisfies

w(z) = 0 on the unit circle and in addition, satisfies

fw(z)df > 0

A finite or infinite set of polynomials,

n
k
. @) = T a_ = n=0p L., (51)
m k=0 nk

ic said to be orthogonal with respect to the weighting function w(z) on the unit
circle if
a) ann>0 n=0,1,...
(52)
b) f 0 (@) p_(2) w2)df = b
In egnation (52), the overbar denotes complex conjugation and 6 i the Kroneker
delta,
It will now be shown that, given any weighting function, there exists a set

of polynomials satisfying conditions a) and b). The proof will proceed by induction

by defining,

, =fw(z) dz (54)

The set of polynomials consisting of (ﬂo(z) alone obviously satisfies a) and b).
Assume now that a set of N polynomials satisfying a) and b) has been

constructed and enlarge this set by one by defining

0 (2) A[N G <>]
zZ) = = = 2 @ Az
N o Mk

where A and the ak‘s are to be determined.




LR ———— e |
L]
.

It follows that

f"N(z)‘c (z) w(z) df

= A[/;NW-F) w(z) df - a‘!]

g =006 N= (5%5)
It is now obvious from equation ( 56) that condition b) will be satisfied by

defining

2 =szc.of (@) w(z) af =

a- [l ™ 7 - @h
J s Z a0 (2) w(z) df
. k=0

The last equation is meaningful only if the hitegral appearing in it doesn't
vanish which is always the case because it is well known thitt the powers of z form
a linearly independent set. Finally, if the positive square root is always taken
in equation (57), it follows that condition a) is also satisfied by the eniarged
set of polynomials. The proof of existence is complete.
Next it will be shown that a set of polynomials satisfying a) and b)
is unique. Assume the contrary. Then there exist two different sets of polynomials

(pn(z) and <p'n (z) both satisfying a) and b). Next, note that it follows from

condition b) that z" can be written as a linear ccmbination of‘Pn(z), wn_l(z). o

®, (z). (This is obvious for n = 0 and follows by a simple induction for the other

powers of z,) This fact in turn implies that

f(pn(z) X wzydt = 0

k=0, 1,... n+l (58)
Now, because there are two sets of polyncmials satisfying a) and b), it follows

that the polynomial
k

Pz) = ¢ (2) - ;’l ¢ (2) =0 (59)
n

where k_ and kr‘1 denote the coefficient of z" in (c;l (z) and @' (2) respectively, is of

degree no higher than n-1,




From this fact and equation (58), it follows that
f lp (z)} : w(z) df

k ] ——

= f on(z) - —"1 ‘Pn (7) p(z) w(z) df (60)
k

=0 n

and, therefore, that p(z) = 0 which implies that

0 (2 =¥ (2) 61)
k'
n

However, k_ = k;1 because,

e 1 = /
-f‘dn (z)\ ‘ wiz) df

and the uniqueness of any set of polynomials ¢ atisfying a) and b) has been

2
e (7)| w(z) df

(62)

established.

It is now possible to establish a number of important properties of orthogonal
/polynom ials. The first of these is the fact that all the zeros of a set of polynomials
satisfying a) and b) lie inside the unit circle. To prove this fact, let Z4 be a zero
of on(z); o (zo) = 0. The polynomial L (z) Az - zo)is then of degree

n-1 and it follows from equ itic 1‘(58) that

: 0 (2)
fg:n(z) wz)df = 0 (63)

=y

Equation [63) can easily be rewritten in the form,
2

©,(2)
/ (z - zo) w(z)ydf = 0 (64) .
g -2 |
0
from which it follows that, 2
0 _(z) ’
f n
Z T =7 w(z) df
%= - = 0
0 ) (65)
o (2)
f 5= ZO w(z) df




Since z = z-1, a simple application of the Schwartz inequality to equation (65) now
shows that I zq |< 1 where the strong ineaqu-lity follows from the fact that
z is not proporcional to unity on the unit circle. This proves the theorem.

The next fact to be established provides the lii.¥ between the theory

of orthogonal polynomials and the speech problem introduced earlier. The property
: of orthogonal polynomials rhat accomplishes this is embodied in the statement

that on(z) minimizes the integral

f 2
; [l | vy a (66)
where the minimum is taken over all polynomials of the form pn(z) "+ an_lzn'l t...a,.
‘ The minimum itself is k;‘z whe. kn denotes the coeffictent of z" in 'On(z).
The proof of this statement can be established by first noting that
since z" can be written as a linear combination of 4, (z) , On_l(z). -~ .00 (z),
it follows that any pn(z) can be represented as
n
P®) = kfn Vi @ (2) (67)
where Vn = k;l in order to force the coefficient of z" in pn(?\ to be unity,
Substitution of equation (67) in equation (66) yields
2 2
ﬂpn(z1 w(z) df = ; | Vk‘
k=0
: . |V..|Z = K] (68)
: However, the lower bound given in equation (68) can be achieved by setting Vk = 0,
- k =0,...n-1 and the proof of the minimization property of orthogonal polynomials

follows.

-

et .

The connection to the speech problem now follows hy recalling that this problem
boiled down to minimizing the mean-squared error given by equation (4). Using Parseval's

theorem, this equation can be rewritten in the z-transform domain with the result,

e = J' IHp(zT2 S(z‘,f2 df (69)
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where

Hp(z) (70)

1
[T
]
™
o
.
N

Since I zp, = 1 on the unit circle minimizing the integral in equation (69)

is the same as minimizing the integral given by

/| P H (z)| \s<z)| df (71)

But zPH (z) isa p o*der polynomial with lead coefficient unity and it follows fror
the above minimization property of orthogonal polynomials that the minimum of

(70) is given by kr')2 and is achieved when

p R
H (2) K <Pp(z) (72)

Here, ‘Pp(z) denotes the pth orthogonal polynomial with respect to the weighting
function given by
we) = |s@)|? (73)

The above argument has transformed the speech pr¢plem under consideration
from one of minimizing a certain integral to one of finding the pth order orthogonal
polynomial with respect to the weighting function ,S(z) I ¢ . There exisc explicit
expressions for the polynomials orthogonal with respeci to an arbitrary weighting function,
however, their evaluation requires the computation of large determinants., A
computationally more attractive approach to the evaluation of the coefficients of
op(z) is available, however, because of the existence of a recursion formula
for the orthogonal polynomials. The existenceof such a recursion formula should
come as no surp rice; in fact, from the discussion in the previous section, it should
be obvious that he desired recursion must be cquivalent to the Levinson recursion,
To derive this new version of the rucursion, substitute equation (72) into the Levinson

recursion, equation (23) with the result

-1

1
nt+1 wn+l ()

. -l -1
k kn z‘On(z) - Kn kn z ‘Pn(z ) (74)
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Next the fact that k;z is the mean squared error at the n'l stage coupled with

equation (30) yields the final recursion formula
" ¢ . (z) = (1-K2-% zo (z) - K 29 '1] 75)
r @ = D) [zen@ - K AP @) (
The Kn's appearing in equation (75) are still given by equation (21) where

now

R = /z'“ w(z) df . (76)

Conclusion

The basic mathematics relatirg to the linear predictive filtering approach
to speech analysis/synthesis has now been presented. The analysis began by
postulating that speech is produced by exciting an all-pole filter with either a uniform
impulse train or white noise. A minimum mean-squared error technique for
estimating the parameters of an all-pulse filter from a segment of speech data
was then introduced and an explicit expression for this filter in terms of the
speech data was derived.

Next, a numericallt attractive recursive technique for computing this filter
was derived and it was shown that this filter must always be stable. This filter
can e realized in a variety of ways such as direct form, cascade form, and in addition,
it wis demonstrated that it also can be realized as a non-uniform acoustic tube.
The reflection coefficients detining this tube are generated as a matter of course

. when computing the filter by means of the recursive technique just mentioned.

e e
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